Cambridge International Examinations Cambridge International General Certificate of Secondary Education | CANDIDATE
NAME | | | | | |-------------------|--|---------------------|--|--| | CENTRE
NUMBER | | CANDIDATE
NUMBER | | | # 420934222 ### **CO-ORDINATED SCIENCES** 0654/21 Paper 2 (Core) October/November 2016 2 hours Candidates answer on the Question Paper. No Additional Materials are required. ### **READ THESE INSTRUCTIONS FIRST** Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid. DO NOT WRITE IN ANY BARCODES. Answer all questions. Electronic calculators may be used. You may lose marks if you do not show your working or if you do not use appropriate units. A copy of the Periodic Table is printed on page 32. At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question. This document consists of 32 printed pages. - 1 Scientists can estimate the concentration of carbon dioxide in the Earth's atmosphere a long time ago. Samples of air can be found trapped in ancient ice. - (a) Table 1.1 shows some results. Table 1.1 | year | carbon dioxide
concentration
/parts per million | |------|---| | 1000 | 280 | | 1200 | 275 | | 1400 | 280 | | 1600 | 270 | | 1800 | 280 | | 2000 | 345 | | | | | (i) | In the year 2000, the carbon dioxide concentration in the trapped air was 345 parts particular. | oer | |------|---|-----| | | State the two gases that make up most of the rest of the atmosphere. | | | | 1 | | | | 2 | [2] | | (ii) | Using the information in Table 1.1, describe how the carbon dioxide concentration in tearth's atmosphere changed between the year 1000 and the year 2000. | :he | | | | | | | | | | | | | | | | [၁] | | Nar | me a biological process that | | | (i) | releases carbon dioxide into the atmosphere, | | | | | [1] | | (ii) | removes carbon dioxide from the atmosphere. | | | | | [1] | © UCLES 2016 0654/21/O/N/16 (b) | (c) | Sug
of | gest and explain the effect on the carbon dioxide concentration in the Earth's atmospher | е | |-----|-----------|--|----| | | (i) | large-scale deforestation, | | | | | | | | | | [1 | 1] | | | (ii) | burning fossil fuels. | | | | | | | | | | [1 | 1] | | (d) | | ncrease in carbon dioxide concentration in the Earth's atmosphere could cause globa | al | | | Stat | e two undesirable effects of global warming. | | | | 1 | | | | | 2 | | | | | | نا الله الله الله الله الله الله الله ال | 2] | 2 Five test-tubes containing different substances are labelled **A**, **B**, **C**, **D** and **E** as shown in Fig. 2.1. Dilute hydrochloric acid is added to each of the five substances. Fig. 2.1 | (a) | (i) | Suggest the letter of the test-tube containing a substance that releases a gaseous | | | | | |---|-----|--|--|--|--|--| | element when the dilute hydrochloric acid is added. | | | | | | | | | Name the gaseous element. | |------|--| | | test-tube | | | gaseous element[1] | | (ii) | Suggest the letter of the test-tube containing a substance that releases a gaseous compound when the dilute hydrochloric acid is added. | | | Name the gaseous compound. | | | test-tube | gaseous compound[1] | | (iii) | Dilute hydrochloric acid contains chloride ions in solution. | | |-----|-------|--|-----| | | | State the letter of the test-tube in which the hydrochloric acid reacts to form a white so | lid | | | | State the name of the white solid produced. | | | | | test-tube | | | | | white solid | [1 | | (b) | Van | adium and its compounds are able to act as catalysts. | | | | (i) | State the meaning of the term catalyst. | | | | | | | | | | | | | | | | [2 | | | (ii) | The chemical symbol for vanadium is shown. | | | | | $^{51}_{23}V$ | | | | | State | | | | | the number of neutrons in the nucleus of this atom, | | | | | the number of electrons in a vanadium atom. | [2 | | | (iii) | State the name of the collection of metals in the Periodic Table to which vanadiabelongs. | nr | | | | | [1 | **(c)** The industrial production of sulfuric acid involves a chemical reaction that uses vanadium oxide as a catalyst. Fig. 2.2 shows part of the industrial process used to produce sulfuric acid. Fig. 2.2 Boxes **X**, **Y** and **Z** contain diagrams that represent the molecules in the reaction. | (i) | State the formula of the molecules shown in box Z . | | |------|--|------| | | | [1] | | (ii) | Explain which box, X or Y , contains molecules that are oxidised in the reaction vesse | l. | | | box | | | | explanation | | | | | .[1] | 3 (a) Three identical kettles have each been filled with the same volume of water at 25 °C. Fig. 3.1 Kettle A contains water that remains at 25 °C. Kettle **B** contains water that is just starting to boil at 100 °C. Kettle C contains water that has been boiling for a few minutes but is still at 100 °C. | (i) | The volume of water in kettle ${\bf A}$ stays the same. There is a small increase in the volume of water in kettle ${\bf B}$. | |-------|--| | | Explain why the water volume increases in kettle B . | | | [1] | | (ii) | Explain why there is a large difference in the volume of water between kettles B and C . | | | [1] | | (iii) | Pure water has a boiling point of 100 °C. | | | State the meaning of the term boiling point. | | | | | | [41] | (iv) When the water boils, some becomes water vapour in the air. Fig. 3.2 shows the arrangement of particles in a gas, liquid and solid. Fig. 3.2 | | - 13 | | |-----|---|-----| | | State and explain which diagram, A, B or C, best represents: | | | | water at 25 °C, | | | | explanation | | | | | | | | water vapour. | | | | explanation | | | | | | | | | [2] | | (b) | The kettles shown in Fig. 3.1 each have a heating element at the bottom. | | | | Name the method by which thermal energy is transferred through the water in the kettles. | | | | | [1] | | (c) | A kettle is connected to a 250 V supply. There is a current of 8A in the heating element. | | | | Calculate the resistance of the heating element. | | | | State the formula you use, show your working and state the unit. | | | | formula | | | | | | | | working | | | | | | resistance = unit = [3] (d) Fig. 3.3 shows a kettle with a mains lead connected to a plug. Inside the plug there is a fuse. Fig. 3.3 A fuse in the plug protects a person using the kettle from an electric shock. Describe what happens to the fuse when a short circuit occurs in the kettle. Explain why this happens. description explanation [2] 4 A gardener increases the number of trees by taking cuttings. The gardener cuts off part of a stem (the cutting) and places it in water, as shown in Fig. 4.1. Fig. 4.1 The cutting develops roots as shown in Fig. 4.2. The gardener then plants the cutting in the ground. Fig. 4.2 | / \ | | 111 | | | T1 | | r | | |-----|------|----------|---------------|----------|------------------|--------------|------------|---------------| | 121 | INA | CUITTING | arowe into a | naw traa | I nie ie ar | i avamnia ni | ובוועםפביו | reproduction. | | 1a | 1110 | CULLITIC | uiovo iiilo a | | i i i i o i o ai | i examble o | asexuai | TEDIOUUCIOII. | | (i) | Define the term asexual reproduction. | | |------|--|-----| | | | | | | | | | | | [2] | | (ii) | For a particular gene, the parent plant has the genotype Aa . | | | | Predict what would be the genotype of the cutting. | | | | genotype | [1] | **(b)** Before the roots develop on a cutting, the gardener encloses the cutting in a plastic bag, as shown in Fig. 4.3. This prevents the cutting from losing too much water before its new roots have grown. Fig. 4.3 | (i) | State the name of | | |-------|---|----| | | the cells in the roots of a plant that absorb most of the water, | | | | | | | | the tissue that carries water up from the roots to the leaves, | | | | | | | | the process of evaporation of water from the surfaces of the cells in the leaves. | | | | [| 3] | | (ii) | Explain why the plastic bag in Fig. 4.3 reduces the amount of water lost from the leave of the cutting. | 98 | | | | | | | [| 1] | | (iii) | State two ways in which the cutting uses the water that it has absorbed. | | | | 1 | | | | 2 | 21 | | (C) | | water. | |-----|------|---| | | Des | cribe the importance to the developing cutting of | | | (i) | nitrate ions, | | | | | | | | [1] | | | (ii) | magnesium ions. | | | | | | | | | **5 (a)** Fig. 5.1 shows the apparatus a teacher uses to demonstrate the reaction between hot magnesium and steam. Fig. 5.1 During the reaction a white solid, **S**, and a flammable gas, **G**, are produced. | (i) | Name solid S and gas G . | | |------|---|---------| | | solid S | | | | gas G | [2] | | (ii) | Predict and explain what is observed, if anything, when the teacher repeats the experiment using copper instead of magnesium. | the | | | observation | | | | explanation | | | | |
[2] | **(b)** Fig. 5.2 shows the apparatus and materials a student uses to study the reaction between magnesium ribbon and excess copper sulfate solution. She measures the temperature of the solution for ten minutes. Fig. 5.2 Fig. 5.3 shows a graph of her results. Fig. 5.3 | (i) | Explain why the results in Fig. 5.3 show that an exothermic reaction occurs between the magnesium and the copper sulfate solution. | |-----|--| | | | | | [1] | | (11) | reason for your answer. | |-------|---| | | | | | | | | [2] | | (iii) | Suggest one change the student could make, other than using a catalyst, to increase the rate of this reaction. | | | | | | [1 | # 6 Fig. 6.1 shows an electric train. Fig. 6.1 The train starts from rest and accelerates with constant acceleration. The train reaches 45 m/s after 60 seconds. The train then continues at this constant speed for 150 seconds. (a) (i) On the grid below sketch a speed/time graph for the train. [2] | | (ii) | Calculate the distance travelled by the | rain between 60 seconds and 210 seconds. | |-----|------|---|---| | | | Show your working. | dis | stance =m [2] | | (b) | The | e train track is made from lengths of steel | rail. The steel rails are made from steel blocks. | | | Eac | ch rail is made using 512000 cm ³ of steel | | | | The | e density of steel is 8.0 g/cm ³ . | | | | Cal | lculate the mass of a steel rail. | | | | Sta | ate the formula you use and show your wo | orking. | | | forn | mula | | | | | | | | | wor | rking | | | | | | | | | | | mass =g [2] | | | | | | (c) Fig. 6.2 shows the two horizontal forces acting on the train when it is moving. Force ${\bf D}$ is the driving force from the engine. Force ${\bf F}$ is the frictional force from air resistance and the wheels. Fig. 6.2 | | Stat | te what can be said about the two forces D and F acting on the train when the train is | | |-----|------|--|---------| | | acc | elerating, | | | | | | | | | | | | | | trav | elling at a constant speed. | | | | | | | | | | |
[2] | | | | | | | (d) | | power station that supplies the electrical energy for the overhead cables on the rails s natural gas as its energy source. | иay | | | (i) | Describe the processes and energy transfers involved in generating electrical energy from natural gas. | rgy | | | | processes | | | | | | | | | | | | | | | energy transfers | | | | | | | | | | |
[4] | | | (ii) | Natural gas is a non-renewable energy source. | 1.1 | | | | Name one other non-renewable energy source and one renewable energy source. | | | | | non-renewable source | | | | | renewable source | [1] | Please turn over for Question 7. 7 (a) Use the terms in the list to complete the sentences about homeostasis. Each term may be used once, more than once, or not at all. capillaries arterioles | | temperature | vasoconstriction | vasodilation | veins | | |-------------------|------------------------|----------------------------|-------------------|-------|------| | Hon | neostasis is defined a | as the maintenance of a | constant internal | | | | lf a _l | person's body tempe | rature gets too low, the | person may | | | | to ra | ise their temperature | e again. Also, in the skin | , | | may | | und | ergo | , reducing the b | olood flow to the | | near | environment shiver sweat the skin surface. [5] **(b)** Fig. 7.1 shows how a person's body temperature changes over a period of three hours. Fig. 7.1 | (i) | State the time at which the person's body temperature is highest. | | | |-----|---|-----|--| | | | [1] | | | (II) | During the three nour period, the external environment stays the same. | | |-------|---|-----| | | Suggest why the person's body temperature | | | | starts to rise at 16:00 hours, | | | | | | | | falls again after that. | | | | | [2] | | (iii) | Describe the role of fatty tissue in the skin in the control of body temperature. | | | | | | | | | | | | | [2] | 8 (a) Fig. 8.1 shows sodium burning in chlorine gas. The product of this reaction is a white solid compound. Fig. 8.1 | i) | Write the word equation for the reaction shown in Fig. 8.1. | | | | | |----|--|--|--|----|--| | | | | | [2 | | (ii) Fig. 8.2 shows some of the particles that are bonded together in the white solid. These particles have electrical charges as shown. Fig. 8.2 Add the chemical symbols for the metal, Na, and non-metal, Cl, to the particles in Fig. 8.2. [1] | (111) | Describe, in terms of electrons, now a chilorine atom becomes a chiloride ion. | |-------|--| | | | | | | | | |[1 (b) A student was asked to produce some chlorine. Fig. 8.3 shows the apparatus and most of the materials that he was given to complete the task. Fig. 8.3 | (i) | Describe how the student should use the apparatus and materials to produce chlorine. Include in your answer any other materials that are required. | |------|--| | | | | | | | | | | | | | | [3] | | (ii) | Describe how the appearance of the carbon cathode changes during the electrolysis of copper chloride. | | | Explain your answer. | | | change in appearance | | | | | | explanation | | | | | | [2] | (c) The bell in Fig. 8.4 is made from a mixture of copper and tin. Fig. 8.4 | (i) | State the word that is used for a mixture of metals. | | |-------|--|-----| | | | [1] | | (ii) | The metal used to make the bell is less malleable than pure copper and pure tin. | | | | State the meaning of the term <i>malleable</i> . | | | | | | | | | [1] | | (iii) | Suggest an advantage of making the bell from a metal that is not malleable. | | | | | | | | | [1] | | (a) A r | nuclear power station uses the energy from nuclear fission to generate electricity. | |----------------|--| | (i) | Describe what happens to the nucleus of an atom when it undergoes nuclear fission. | | | [1] | | (ii) | Place alpha (α), beta (β) and gamma (γ) radiations in order of their ionising ability. | | | most ionising least ionising [1] | | (iii) | Alpha radiation sources are more dangerous to humans, when they are breathed in or swallowed, than alpha radiation sources remaining outside the body. | | | Explain this observation. | | | | | | [1] | | (b) An | overhead power cable transmits electrical power from a power station to a town. | | Th | e resistance of the cable is 6Ω . | | (i) | State the effect on the resistance of the cable if the diameter of the cable is increased. | | | [1] | | (ii) | State one way to change the resistance of the cable, other than changing the diameter. | | | | | | [1] | 9 **10** (a) Fig. 10.1 shows the human female reproductive system. Fig. 10.1 | | (i) | Name the parts labelled X , Y and Z . | | |-----|------|--|-----| | | | X | | | | | Υ | | | | | Z | [3 | | | (ii) | State one function of part X . | Į | | | | | [1 | | (b) | (i) | State where in the female reproductive system the egg is fertilised. | | | | | | [1] | | | (ii) | Outline the early development of the zygote after fertilisation. | [3 | 11 Fig. 11.1 shows apparatus used to investigate the compounds produced when ethanol burns. Fig. 11.1 (a) (i) Before the ethanol burner is lit, the cobalt chloride paper is blue and the limewater is colourless. Predict and explain the changes in appearance of the cobalt chloride paper and the limewater shortly after the burner is lit. | cobalt chloride paper | | |-----------------------|-----| | explanation | | | limewater | | | explanation | | | | [4] | (ii) Predict what happens to the reading on the balance during the experiment. | F. | | ٦. | |----|----|----| | | п. | | | | | | | | | | (b) Fig. 11.2 shows diagrams of molecules, I, $\bf J$ and $\bf K$. | | Fig. 11.2 | | |-------|--|---------| | (i) | Molecule J is a saturated hydrocarbon. | | | | State what is meant by the terms | | | | hydrocarbon, | | | | | | | | | | | | saturated. | | | | | | | | |
[2] | | (ii) | Name molecules I and K. | , | | () | 1 | | | | Κ | [2] | | (iii) | State the chemical formula of the molecule that reacts with molecule ${\bf K}$ to form molecul | | | | | | [1] **12** (a) A star emits γ -rays and visible light. γ -rays and visible light are parts of the electromagnetic spectrum. Place γ-rays and visible light in their correct positions in the incomplete electromagnetic spectrum shown in Fig. 12.1. [1] | X-rays | infra-red
waves | microwaves | | |--------|--------------------|------------|--| |--------|--------------------|------------|--| Fig. 12.1 (b) Below are four terms used to describe a wave. Draw a line from each term to its definition. term definition amplitude how far the wave travels in one second the distance from any point on one wave frequency to the same point on the next wave the distance from the centre of a wave to speed the top or to the bottom of the wave the number of waves passing a fixed point wavelength in one second [2] (c) Telescopes used to observe stars contain mirrors. Fig. 12.2 shows a ray of light reflecting from a plane mirror. Fig. 12.2 (i) On Fig. 12.2 label with an r the angle of reflection. [1] (ii) The angle of incidence is 36°. State the angle of reflection. Explain your answer. angle of reflection explanation [1] (d) Fig. 12.3 shows a comet seen in the sky by an astronomer. Fig. 12.3 The astronomer observes the comet in a mirror. Draw an image of the comet that the astronomer sees in the mirror. (e) Telescopes also contain lenses. Rays of light from a star pass through a lens, as shown in Fig. 12.4. Fig. 12.4 - (i) On Fig. 12.4, label the principal focus of the lens with the letter **P**. [1] - (ii) On Fig. 12.4, use a double-headed arrow (◆◆) to indicate the focal length of the lens.[1] - (iii) As light passes through the lens, the direction of the light is changed. State the name of this process. | [1 | | 1 | |----|--|---| |----|--|---| - **(f)** An explosion in space produces both light waves and sound waves. - (i) Explain why an astronomer on Earth would be able to see the light wave through a telescope but would not be able to hear the sound wave produced by the explosion.[1 (ii) State one other difference between a light wave and a sound wave. _____[1] The Periodic Table of Elements | | = | 2 | Ε̈́ | helium
4 | 10 | Ne | neon
20 | 18 | Ā | argon
40 | 36 | 궃 | krypton
84 | 54 | Xe | xenon
131 | 98 | R | radon | | | | | |-------|----|---|-----|---------------|---------------|--------------|------------------------------|----|----|------------------|----|----|-----------------|----|----------------|------------------|-------|-------------|-----------------|--------|-----------|-------------------|---| | | => | | | | 6 | ш | fluorine
19 | 17 | Cl | chlorine
35.5 | 35 | ä | bromine
80 | 53 | Н | iodine
127 | 85 | ¥ | astatine
- | | | | | | | > | | | | 8 | 0 | oxygen
16 | 16 | ഗ | sulfur
32 | 34 | Se | selenium
79 | 52 | Б | tellurium
128 | 84 | Ъ | polonium | 116 | ^ | livermorium | | | | > | | | | 7 | z | nitrogen
14 | 15 | ۵ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sb | antimony
122 | 83 | <u>.</u> | bismuth
209 | | | | | | | ≥ | | | | 9 | ပ | carbon
12 | 14 | S | silicon
28 | 32 | Ge | germanium
73 | 20 | S | tin
119 | 82 | Ъ | lead
207 | 114 | Εl | flerovium | | | | = | | | | 5 | В | boron
11 | 13 | Ρl | aluminium
27 | 31 | Ga | gallium
70 | 49 | In | indium
115 | 81 | 11 | thallium
204 | | | | | | | | • | | | | | | | | | 30 | Zu | zinc
65 | 48 | В
О | cadmium
112 | 80 | Нg | mercury
201 | 112 | ပ် | copernicium | | | | | | | | | | | | | | 29 | Cn | copper
64 | 47 | Ag | silver
108 | 62 | Au | gold
197 | 111 | Rg | roentgenium | | | Group | | | | | | | | | | | 28 | Ż | nickel
59 | 46 | Pd | palladium
106 | 78 | ₹ | platinum
195 | 110 | Ds | darmstadtium
- | | | Gro | | | | | | | | | | | 27 | ပိ | cobalt
59 | 45 | R | rhodium
103 | 77 | 'n | iridium
192 | 109 | Μţ | meitnerium
- | | | | | _ | I | hydrogen
1 | | | | | | | 26 | Ьe | iron
56 | 44 | Ru | ruthenium
101 | 9/ | SO | osmium
190 | 108 | Ł | hassium | I | | | | | | | | | | | | | 25 | Mn | manganese
55 | 43 | J _C | technetium
- | 75 | Re | rhenium
186 | 107 | Bh | bohrium | | | | | | | | | loc | ass | | | | 24 | ర | chromium
52 | 42 | Mo | molybdenum
96 | 74 | > | tungsten
184 | 106 | Sg | seaborgium | | | | | | | Key | atomic number | atomic symbo | name
relative atomic mass | | | | 23 | > | vanadium
51 | 41 | qN | niobium
93 | 73 | Та | tantalum
181 | 105 | Сb | dubnium | | | | | | | | | ato | rela | | | | 22 | F | titanium
48 | 40 | Zr | zirconium
91 | 72 | Ξ | hafnium
178 | 104 | 꿒 | rutherfordium | | | | | | | | | | | | | | 21 | Sc | scandium
45 | 39 | > | yttrium
89 | 57-71 | lanthanoids | | 89–103 | actinoids | | | | | = | | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 38 | လွ | strontium
88 | 26 | Ba | barium
137 | 88 | Ra | radium | | | | _ | | | | က | : | lithium
7 | 1 | Na | sodium
23 | 19 | ¥ | potassium
39 | 37 | Rb | rubidium
85 | 55 | Cs | caesium
133 | 87 | ŗ | francium | | | 71 | Γn | lutetium
175 | 103 | ۲ | lawrencium | ı | |----|----|---------------------|-----|-----------|--------------|-----| | 20 | Υp | ytterbium
173 | 102 | 8 | nobelium | ı | | 69 | T | thulium
169 | 101 | Md | mendelevium | ı | | 89 | ш | erbium
167 | 100 | Fm | fermium | ı | | 29 | 운 | holmium
165 | 66 | Es | einsteinium | 1 | | 99 | ò | dysprosium
163 | 86 | ర | californium | ı | | 65 | Д | terbium
159 | 62 | Ř | berkelium | 1 | | 64 | В | gadolinium
157 | 96 | Cm | curium | ı | | 63 | Ш | europium
152 | 92 | Am | americium | 1 | | 62 | Sm | samarium
150 | 94 | Pu | plutonium | 1 | | 61 | Pm | promethium
- | 93 | ď | neptunium | 1 | | 09 | PN | neodymium
144 | 92 | \supset | uranium | 238 | | 29 | Ā | praseodymium
141 | 91 | Ра | protactinium | 231 | | 58 | Ce | cerium
140 | 06 | T | thorium | 232 | | 25 | Га | lanthanum
139 | 89 | Ac | actinium | 1 | lanthanoids actinoids The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.) To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.